
ObjectListView Documentation
Release 1.2

Phillip Piper

February 18, 2015

Contents

1 Without wasting my time, just tell me what it does! 3

2 OK, I’m interested. What do I do next? 5

3 Bleeding-edge source 7

4 Site contents 9
4.1 What’s New? . 9
4.2 Features of an ObjectListView . 10
4.3 Getting Started . 14
4.4 Learning to cook . 22
4.5 Editing Cell Values . 29
4.6 Using a GroupListView . 32
4.7 Using a ListCtrlPrinter . 35
4.8 Frequently Asked Questions . 40
4.9 Major Classes Reference . 41
4.10 Change Log . 42

i

ii

ObjectListView Documentation, Release 1.2

An ObjectListView is a wrapper around the wx.ListCtrl that makes the list control easier to use. It also provides
some useful extra functionality.

Larry Wall, the author of Perl, once wrote that the three essential character flaws of any good programmer were sloth,
impatience and hubris. Good programmers want to do the minimum amount of work (sloth). They want their programs
to run quickly (impatience). They take inordinate pride in what they have written (hubris).

ObjectListView encourages the vices of sloth and hubris, by allowing programmers to do far less work but still produce
great looking results.

Contents 1

ObjectListView Documentation, Release 1.2

2 Contents

CHAPTER 1

Without wasting my time, just tell me what it does!

OK, here’s the bullet point feature list:

• Automatically transforms a collection of model objects into a fully functional wx.ListCtrl.

• Automatically sorts rows.

• Easily edit the cell values.

• Supports all ListCtrl views (report, list, large and small icons).

• Columns can be fixed-width, have a minimum and/or maximum width, or be space-filling (Column Widths)

• Displays a “list is empty” message when the list is empty (obviously).

• Supports checkboxes in any column

• Supports alternate rows background colors.

• Supports custom formatting of rows.

• Supports searching (by typing) on any column, even on massive lists.

• Supports custom sorting

• Supports Filtering and batched updates

• The FastObjectListView version can build a list of 10,000 objects in less than 0.1 seconds.

• The VirtualObjectListView version supports millions of rows through ListCtrl’s virtual mode.

• The GroupListView version supports arranging rows into collapsible groups.

• Effortlessly produce professional-looking reports using a ListCtrlPrinter.

Seriously, after using an ObjectListView, you will never go back to using a plain wx.ListCtrl.

3

ObjectListView Documentation, Release 1.2

4 Chapter 1. Without wasting my time, just tell me what it does!

CHAPTER 2

OK, I’m interested. What do I do next?

You can download a source package of the ObjectListView which includes the ObjectListView module, as well as
some demo applications showing ObjectListView in action.

After that, you might want to look at the Getting Started and the Cookbook sections. Please make sure you have read
and understood these sections before asking questions in the Forums.

At some point, you will want to do something with an ObjectListView and it won’t be immediately obvious how to
make it happen. After dutifully scouring the Getting Started and the Cookbook sections, you decide that is is still not
obvious. The Forum section is the place to find all your as-yet-unasked questions.

It may even be possible that you might find some undocumented features in the code (also known as bugs). These
“features” can be reported to the project’s Issue Tracker and the status of your “feature” report can be tracked here.

If you would like to ask me a question or suggest an improvement, you can contact me here: jppx1@bigfoot.com.

5

https://sourceforge.net/project/showfiles.php?group_id=225207&package_id=280564
https://sourceforge.net/forum/forum.php?forum_id=825500
https://sourceforge.net/tracker/?func=add&group_id=225207&atid=1064157
https://sourceforge.net/tracker/?group_id=225207&atid=1064157
mailto:jppx1@bigfoot.com

ObjectListView Documentation, Release 1.2

6 Chapter 2. OK, I’m interested. What do I do next?

CHAPTER 3

Bleeding-edge source

If you are a very keen developer, you can access the SVN repository directly for this project. The following SVN
command will fetch the most recent version from the repository:

svn co https://objectlistview.svn.sourceforge.net/svnroot/objectlistview/python/trunk objectlistview

There are details on how to use Subversion here on SourceForge.

Please remember that code within the SVN is bleeding edge. It has not been well-tested and is almost certainly full of
bugs. If you just want to play with the ObjectListView, it’s better to stay with the official releases, where the bugs are
(hopefully) less obvious.

7

https://sourceforge.net/docs/E09

ObjectListView Documentation, Release 1.2

8 Chapter 3. Bleeding-edge source

CHAPTER 4

Site contents

4.1 What’s New?

For the (mostly) complete change log, see here.

4.1.1 v1.2 - September 2008

• Big new feature: ListCtrlPrinter

• Added AddObjects() and RemoveObjects() and friends

• Added Filtering

• Added batched updates adapter

• Made GroupListView a subclass of FastObjectListView. More speed; less flicker.

Small things

• Correctly handle model objects that cannot be hashed

• Added CELL_EDIT_STARTED and CELL_EDIT_FINISHED events

• Added ensureVisible parameter to SelectObject()

• Remove flicker from some more FastObjectListView operations

4.1.2 v1.1 - July 2008

• Added GroupListView

• Column headers can now have their own images

4.1.3 v1.0.1 - June 2008

• Sorting can now be customised throught the EVT_SORT event

• Added searching by sort column

• Added binary search

9

ObjectListView Documentation, Release 1.2

• VirtualObjectListView can now be sorted, using the EVT_SORT event. By default, they are still not
sortable

• Fixed some bugs on Mac and Linux

4.1.4 v1.0 - June 2008

• First true public release.

• Offical website up and running

• Added check state support

• Added named image support

• Added more examples

4.1.5 v0.9 - May 2008

• Released on wxWiki – to thunderous silence :-)

• Added cell editing

4.1.6 v0.5 - March 2008

• Converted to use straight wxPython now that wax appears dead

• Added column width management (minimum, maximum, space filling)

4.1.7 v0.1 - November 2006

• First version. Written to work with wax.

• Used internally only

4.2 Features of an ObjectListView

Why take the time to learn how to use an ObjectListView? What’s the benefit? The return on investment? This page
tries to document the useful features of an ObjectListView. Not all features are equally useful, but its better to be
aware of what’s available so that you can use it when the need arises.

4.2.1 Ease of use

The major goal of an ObjectListView is to make your life easier. All common ListCtrl tasks should be easier – or
at least no more difficult – with an ObjectListView. For the investment of creating column definitions, you receive a
great deal of convenience and value added functions. See Getting Started for an introduction to the basics.

10 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.2.2 Automatically create the ListCtrl from model objects

The major way in which the ObjectListView makes your life easier is by being able to automatically build the ListCtrl
from a collection of model objects. Once the columns are defined, an ObjectListView is able to build the rows of the
ListCtrl without any other help. It only takes a single method call: SetObjects().

4.2.3 Different flavours of ObjectListView for different purposes

An ObjectListView is the plain vanilla version of the control. It accepts a list of model objects, and builds the control
from those model objects.

A FastObjectListView requires a list of model objects, but it can deal with those objects very quickly. Typically, it can
build a list of 10,000 objects in less than 0.1 seconds.

A GroupListView‘ also requires a list of model objects, but allows those model objects to be partitioned into groups,
and then those groups presented to the user as collapsible collections. Partitioned is normally done using the sort
column. When the user clicks on a different sort column, the rows are partitioned into different groups. See Using a
GroupListView.

A VirtualObjectListView does not require a list of model objects. Instead, it asks for model objects as it requires them.
In this way, it can support an unlimited number of rows. A VirtualObjectListView must be given an objectGetter
callable, which is called when the list needs to display a particular model object.

4.2.4 Editing cell values

ListCtrls normally allow only the primary cell (column 0) to be edited. An ObjectListView allows all cells to be edited.
This editing knows to use different editors for different data types. It also allows autocompletion based on existing
values for that column (pass autoCompleteCellEditor=True to a column constructor)

See Editing Cell Values for more details.

4.2.5 Automatic sorting

Once the column are defined, the ObjectListView will automatically sort the rows when the user clicks on a column
header. This sorting understands the data type of the column, so sorting is always correct according to the data type.
Sorting does not use the string representation.

4.2.6 Supports all ListCtrl views

An ObjectListView supports all views: report, list, large and small icons. All functions should work equally in all
views: editing, check state, icons, selection.

4.2.7 More control over column width

An ObjectListView allows the programmer to have control over the width of columns after the ListCtrl is created.

When a column is defined, it is normally given a width in pixels. This is the width of the column when the ListCtrl is
first shown. After creation, the user can resize that column to be something else.

By using the minimumWidth and maximumWidth attributes, the programmer can control the lower and upper limits of
a column. The programmer can also use the fixedWidth constructor parameter to indicate that a column should not be
resizable by the user.

4.2. Features of an ObjectListView 11

ObjectListView Documentation, Release 1.2

Finally, the programmer can specify that a column should resize automatically to be wider when the ListCtrl is made
wider and narrower when the ListCtrl is made narrower. This type of column is a space filling column, and is created
by passing the isSpaceFilling parameter to the ColumnDefn constructor.

See these recipes:

• 3. How can I stop the user from making a column too narrow or too wide?

• 4. How can I stop the user from resizing a column?

• 5. How can I make a column get bigger when the ObjectListView is made bigger?

4.2.8 Displays a “list is empty” message

An empty ListCtrl can be confusing to the user: did something go wrong? Do I need to wait longer and then
something will appear?

An ObjectListView can show a “this list is empty” message when there is nothing to show in the list, so that the
user knows the control is supposed to be empty.

See this recipe: 8. How do I change the message that’s shown when the ObjectListView is empty?

4.2.9 Checkboxes in any column

An ObjectListView trivially supports checkboxes on rows. In fact, it supports multiple checkboxes per row, if you are
really keen. See this recipe for more details: 7. How do I use checkboxes in my ObjectListView?.

4.2.10 Alternate rows background colors

Having subtly different row colours for even and odd rows can make a ListCtrl easier for users to read.
ObjectListView supports this alternating of background colours. It is enabled by default, and the background
colours are controlled by the evenRowsBackColor and oddRowsBackColor attributes.

4.2.11 Custom row formatting

An ObjectListView allows rows to be formatted with custom colours and fonts. For example, you could draw
clients with debts in red, or big spending customers could be given a gold background. See here: 6. How can I change
the colours of a row?

4.2.12 Model object level operations

The ObjectListView allows operations at the level that makes most sense to the application: at the level of model
objects. Operations like SelectObjects(), RefreshObjects(), GetSelectedObjects() and GetCheckedObjects() provide a
high-level interface to the ListCtrl.

The VirtualObjectListView is an unfortunate exception to these features. It does not know where any given
model object is located in the control (since it never deals with the whole list of objects), so these model level operations
are not available to it.

12 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.2.13 Searching on the sort column

When a user types into a normal ListCtrl, the control tries to find the first row where the value in cell 0 begins
with the character that the user typed. [This feature is not supported by a standard ListCtrl on all platforms, but it
is supported on all platforms by ObjectListView].

ObjectListView extends this idea so that the searching can be done on the column by which the control is sorted
(the “sort column”). If your music collection is sorted by “Album” and the user presses “z”, ObjectListView will move
the selection to the first track of the “Zooropa” album, rather than find the next track whose title starts with “z”.

In many cases, this is behaviour is quite intuitive. iTunes works in this fashion on its string value columns (e.g. Name,
Artist, Album, Genre).

4.2.14 Fast searching on sorted column

When the user types something into a control, the ObjectListView will use a binary search (if possible) to find a
match for what was typed. A binary search is normally possible if the ObjectListView is sorted on a column that
shows strings.

A binary search is able to handle very large collections: 10,000,000 rows can be searched in about 24 comparisons.
This makes it feasible to seach by typing even on large virtual lists.

4.2.15 Filtering

By calling SetFilter(), you can dynamically filter the model objects that are presented to the user in the control.

A filter is a callable that accepts a single parameter, which is the list of model objects provided to the
ObjectListView via the SetObjects() method. The filter should return the list of objects that will be pre-
sented to the user.

The supplied module Filter provides some useful standard filters:

• Filter.Predicate(booleanCallable) Show only the model objects for which the given callable
returns true. The callable must accept a single parameter, which is the model object to be considered.

• Filter.Head(n) Show only the first N model objects.

• Filter.Tail(n) Show only the last N model objects. Useful to watching logs.

• Filter.TextSearch(objectListView, columns=(), text="") Show only model objects
that contain text in one of the given columns. If columns is empty, all columns from the
ObjectListView will be considered.

• Filter.Chain(filters) Show only model objects which satisfy all of the given filters.

Filtering and performance

Most filters impose a performance penalty on the rebuilding of an ObjectListViews contents.

This is because they (normally) examine each model object provided to the SetObjects() method and decide if it
should be included. Thus, a filter normally has a O(n) performance hit.

However, for a plain vanilla ObjectListView, if the filter significantly reduces the number of displayed rows,
rebuilding the list may be faster with the filter installed, since building N/2 rows (for example) is faster than building
N rows. This does not apply for FastObjectListViews, since it only builds rows when they are displayed.

4.2. Features of an ObjectListView 13

ObjectListView Documentation, Release 1.2

4.3 Getting Started

4.3.1 Introduction

I often find that I have a collection of objects which I want to present to the user in some sort of tabular format. It could
be the list of clients for a business, a list of known FTP servers or even something as mundane as a list of files in a
directory. User interface-wise, the ListCtrl is the perfect control for these situations. However, I find myself groaning
at the thought of using the ListCtrl and secretly hoping that I can use a ListBox instead.

The reason for wanting to avoid the ListCtrl is all the boilerplate code it needs to work. There is the basic “list building
loop” insert the data item, add the subitems, call SetItemData() with some integer that will tell me which data object
the row is showing.

If I want to allow sorting, I can either write everything from scratch (again), or I can do the work of setting up the
‘itemDataMap’ so that ColumnSorterMixin will work.

When the user right clicks on the list, I have to figure out which rows are selected, and then maps those rows back into
the model objects I am interested in. Neither of these tasks are obvious if you don’t already know the tricks.

The ObjectListView was designed to take away all these repetitive tasks and so make a ListCtrl much easier to use.

4.3.2 Seeing the big picture

If you are a visual person, the process I’m about to explain is this:

14 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

You give the ObjectListView a list of model objects. It extracts aspects from those objects, converts those aspects to
strings, and then builds the control with those strings.

Keep this image in mind when reading the following text.

4.3.3 Mental gear shift

This is important. You need to understand this.
ignored

Before trying to use an ObjectListView, you should understand that it is different to a normal ListCtrl. A normal ListC-
trl is essentially passive: it sits there, and you poke and prod it and eventually it shows you want. An ObjectListView
is much more active. You tell it what you want done and the ObjectListView does it for you.

An ObjectListView is used declaratively: you state what you want the ObjectListView to do (via its configuration),
then you give it your collection of model objects, and the ObjectListView does the work of building the ListCtrl for
you.

This is a different approach to using a ListCtrl. You must get your mind around this, especially if you have done any
ListCtrl programming before (See Unlearn you must).

4.3. Getting Started 15

ObjectListView Documentation, Release 1.2

The crucial part of using an ObjectListView is configuring it. Some of this configuration is done on the ObjectListView
itself. However, most of this configuration can be done on the columns that are used within the list. Within each column
definition, you say what the column should be called, what data it should show, and how that data is to be formatted
(there is more, but that’s enough to start with).

Once the columns and control are configured, putting it into action is simple. You give it the list of model objects you
want it to display, and the ObjectListView will build the ListCtrl for you:

self.myFirstOlv.SetObjects(myListOfTracks)

4.3.4 Unlearn you must

This section is for those who are familiar with using a ListCtrl.
ignored

For those of you who have struggled with a ListCtrl before, you must unlearn. An ObjectListView is not a drop in
replacement for a ListCtrl. If you have an existing project, you cannot simply create an ObjectListView instead of
creating a ListCtrl. An ObjectListView needs a different mindset. If you can perform the mind-mangling step of
changing your thinking, ObjectListView will be your best friend.

If you find yourself inserting rows, changing subitems, or calling SetItem() or its friends, you need to stop - you are
being seduced to the dark side. An ObjectListView does all that work for you. You tell it the aspects of each model
object you want to show (via the ColumnDefn objects), specify any formatting and then you give it the list of objects
to show.

Resist the temptation to add, edit, remove, or otherwise mess with the rows of an ObjectListView – it will not work.

There is also no need to hide information in each row. Old style ListCtrl programming often required attaching a key
of some sort to each row, so that when the user did something with a row, the programmer would know which model
object that row was related to. This attaching was often done by creating one or more zero-width columns, or by
calling SetItemData() with some integer that uniquely identified the model object.

With an ObjectListView , you do not need to do this anymore. The ObjectListView already knows which model object
is behind each row. In many cases, the programmer simply uses the GetSelectedObjects method to find out which
model objects the user wants to do something to.

4.3.5 This bit goes here, that bit goes there

The first configuration step is to tell each column which bit (called an “aspect”) of your model object it is going to
display. This is done through the column’s valueGetter attribute.

In the most common case, the valueGetter attribute of the column is the name of the attribute that the column should
display.

Imagine that we were writting an application that managed a MP3 music library. A central part of this application
would be the list of tracks available in the library. Your central model class, Track, might look like this:

class Track(object):

def __init__(self, title, artist, album, lastPlayed, sizeInBytes, rating):
self.title = title
self.artist = artist
self.album = album
self.lastPlayed = lastPlayed
self.sizeInBytes = sizeInBytes
self.rating = rating

16 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

def GetSizeInMb(self):
return self.sizeInBytes / (1024.0*1024.0)

To show the title in a column, you would make a ColumnDefn like this:

titleColumn = ColumnDefn("Title", "left", 120, "title")

This says, “Make a left-aligned column, 120 pixels wide, with a title ‘Title’, which shows the aspect ‘title’ from each
model object.”

The definitions for the artist and the album are similar:

artistColumn = ColumnDefn("Artist", "left", 120, "artist")
albumColumn = ColumnDefn("Album", "left", 120, "album")

4.3.6 Converting to strings

OK, we’ve told our first few columns which bits of data they should display. For the title, artist, and album columns,
this is all that is necessary. But for the “Size In MBs” and “Last Played” columns, there is something else we need to
consider: how to convert our bit of data to a string.

A ListCtrl control can only display strings. Everything else - booleans, integers, dates, whatever - has to be converted
to a string before it can be given to the ListCtrl. By default, the ObjectListView converts data to strings using the string
format operation, more or less like this: "%s" % aspectValue

You can use a different format string (instead of the default “%s”) by setting the stringConverter attribute on the
column definition. If the stringConverter attribute is a string, its value will be used as the format string instead of
“%s”.

So for our “Size In MBs” column, we are only interested in one decimal places, so we would define that column like
this:

sizeInMbColumn = ColumnDefn("Size (MB)", "center", 100,
"GetSizeInMb", stringConverter="%.1f")

Notice that here we used a method name (“GetSizeInMb”) instead of an attribute name. The column definition can
handle either (actually, it can handle quite a bit more than that, but that’s for later).

If the aspectValue is a date or time, then instead of using the plain % operator, the stringConverter is used as the
parameter to strftime method, like this: dateTimeAspect.strftime(column.stringConverter)

So, we would configure our “Last Played” column like this:

lastPlayedColumn = ColumnDefn("Last Played", "left", 100,
"lastPlayed", stringConverter="%d-%m-%Y")

4.3.7 Put it all together and what have you got?

Putting all these columns together, we put them into use via the SetColumns method:

self.myFirstOlv.SetColumns([
ColumnDefn("Title", "left", 120, "title"),
ColumnDefn("Size (MB)", "center", 100, "GetSizeInMb", stringConverter="%.1f"),
ColumnDefn("Last Played", "left", 100, "lastPlayed", stringConverter="%d-%m-%Y"),
ColumnDefn("Rating", "center", 100, "rating")

])

4.3. Getting Started 17

ObjectListView Documentation, Release 1.2

[I dropped the Artist and Album columns so that the screen shot below is smaller].

Once we have defined the columns, we set the whole thing into action with SetObjects:

self.myFirstOlv.SetObjects(self.listOfTracks);

And we should get something like this:

4.3.8 What have we achieved?

Underwhelmed? Admittedly, it’s not much to look at, but be patient. Also, consider how much work you had to do to
make it happen: some column definitions and one line of code. It doesn’t look so bad now, does it?

With those column definitions, we have a ListCtrl that shows the title, date last played, size (in megabytes) and rating
of various tracks in your music library. But, actually, we have quite a bit more than that.

Without any extra work, sorting just works. Clicking on the column headers will sort and reverse sort the rows. The
sort is accurate for the data type: when sorting by size, a song of 35 megabytes will come after a song of 9 megabytes.

The control also understands ‘model object’ level operations. So, we can ask the control for the tracks that are selected
(via the GetSelectedObjects method). We can refresh the information about one or more tracks (using RefreshObjects
method)

We also have the access to some of the nice builtin functions that ObjectListView provides.

18 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.3.9 Adding some images

OK, that’s good, but any real ListCtrl needs to be able to put little icons next to the text. That is our next task.

A ListCtrl can only ever show images that exist in its image list. To make an image available to an ObjectListView,
you call AddImages method:

musicImage = self.myOlv.AddImages(Images.getMusic16Bitmap(), Images.getMusic32Bitmap())

This registers two versions of the same image to the ObjectListView. The second bitmap is only used when the list is
in Large Icon view. If your control is never going to be put into Large Icon view (for example, it’s always in Details
view), you don’t need to register the second image.

The AddImages method return an integer that identifies the image. Referring to images via their index is a bit of a
pain. It’s easier to register named images, via AddNamedImages and then use the names of the images:

self.myOlv.AddNamedImages("user", Images.getUser16Bitmap(), Images.getUser32Bitmap())
self.myOlv.AddNamedImages("group", Images.getGroup16Bitmap(), Images.getGroup32Bitmap())

Once we have an image registered, we can use it in the control. This is done using the imageGetter attribute of a
column. When a column wants to determine what image should be shown, it uses the imageGetter attribute. The
simplest case is to assign a constant to this attribute. This will give every cell in the column the same image, like this:

titleColumn = ColumnDefn("Title", "left", 120, "title", imageGetter=musicImage)

This is easy, but limited. Much more useful is giving a callable as the imageGetter (notice that here we’re using image
names):

def artistImageGetter(track):
soloArtists = ["Nelly Furtado", "Missy Higgins", "Moby", "Natalie Imbruglia",

"Dido", "Paul Simon", "Bruce Cockburn"]
if track.artist in soloArtists:

return "user"
else:

return "group"

artistColumn = ColumnDefn("Artist", "left", 120, "artist", imageGetter=artistImageGetter)

If the imageGetter is a callable, it must accept a single parameter, which is the model object whose image is being
sought. It should return the name or the index of the image to display, or -1 if no image should be shown.

The imageGetter can also be given the name of an attribute or a method of your model object. This is useful when the
model objects themselves know which image they should use.

4.3.10 Smarter string conversions

Being able to change the stringConverter to a different format string is useful, but there are just some cases that need
something more substantial.

In our Track class, the actual size of the track is stored as sizeInBytes. It would be nice if we could show the size as
“360 bytes”, “901 KB”, or “1.1 GB” which ever was more appropriate.

To do this, we can set the stringConverter attribute to be a callable, like this:

def sizeToNiceString(byteCount):
for (cutoff, label) in [(1024*1024*1024, "GB"), (1024*1024, "MB"), (1024, "KB")]:

if byteCount >= cutoff:
return "%.1f %s" % (byteCount * 1.0 / cutoff, label)

if byteCount == 1:

4.3. Getting Started 19

ObjectListView Documentation, Release 1.2

return "1 byte"
else:

return "%d bytes" % byteCount

sizeColumn = ColumnDefn("Size", "center", 100, "sizeInBytes", stringConverter=sizeToNiceString)

If stringConverter is a callable, it must accept a single parameter, which is the value to be converted (note: it’s the
value not the model object that is given to the converter).

Putting all these bits together, we now have something that looks like this:

Hey! That’s starting to not look too bad.

4.3.11 Playing with groupies

Moving up a gear, we can build on these basic configurations to produce a GroupListView, which is a wx.ListCtrl
which has collapsible groups.

The code for this example is in “GroupExample.py” The first thing to notice is that the code for this example is almost
identical to the code from example 2. There is very little extra needed to make a GroupListView.

To make a GroupListView work, the control needs to know how to collect the model objects into different groups.
This is done by getting a “group key” for each object. All objects with the same group key are placed in the same
group.

The “group key” for an object is normally whatever value the object has in the “group by” column. So if the group list
is being grouped by the “Artist” column, the group key for a track will be, for example, “Coldplay” or “Nickelback”.
This process can, of course, be customised, using the groupKeyGetter attribute of OLVColumn – but that’s a story for
another time. See Using a GroupListView for full information.

One common pattern is for objects to be grouped by the first letter of a string value, for example on the “Title” column,
all tracks starting with “A” would be grouped together. This is so common that there is built-in way to do it, as it shown

20 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

in the first column in the example:

ColumnDefn("Title", "left", 120, "title", imageGetter=musicImage, useInitialLetterForGroupKey=True)

Putting all these bits together, we now have something that looks like this:

Now that’s cool!

4.3.12 And they’re off and running

Well done! You’ve made it to the end of the tutorial. You should by now have a reasonable grasp of some of the things
an ObjectListView can do, and how to use it in your application.

If you need further help, you can look at the Cookbook and the Forum for those questions that just don’t have answer
anywhere else.

Don’t forget: Use The Source Luke! You have all the source code. If you can’t figure something out, read the code
and see what is actually happening.

4.3. Getting Started 21

https://sourceforge.net/forum/forum.php?forum_id=825500

ObjectListView Documentation, Release 1.2

4.4 Learning to cook

1. What flavour of ObjectListView do I want to use?

2. How do I let the user edit the values shown in the list?

3. How can I stop the user from making a column too narrow or too wide?

4. How can I stop the user from resizing a column?

5. How can I make a column get bigger when the ObjectListView is made bigger?

6. How can I change the colours of a row?

7. How do I use checkboxes in my ObjectListView?

8. How do I change the message that’s shown when the ObjectListView is empty?

9. How can I show a list of dictionaries in the ObjectListView?

10. How can I reference the column in a valueGetter function?

11. How can I change the way group headers look?

12. How can I only redraw the control every N seconds?

4.4.1 1. What flavour of ObjectListView do I want to use?

There are three flavours of ObjectListView (four if you include GroupListView):

ObjectListView - Plain Vanilla

Stock standard, but still very nice

A normal ObjectListView is capable of anything a ListCtrl can do – only in a much easier to use package. Though it
will handle a large number of rows, it is better suited for smaller lists, that is, about 1000 rows or less.

If in doubt, start with this flavour. You can always change it to one of the others later on.

VirtualObjectListView - Expresso

22 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

Has a slight bitter taste, but makes you capable of anything

When you want to knock your users out with 10 million search results in a ListCtrl, a VirtualObjectListView is for
you. It can handle any number of objects.

But it does so at a cost:

• You have to implement your own sorting method.

• You cannot use object level commands like SelectObject or RefreshObject since the list has no way of knowing
where any given model object is in the list.

But for the cost of this “bitterness,” you really can do anything.

FastObjectListView - Red Bull

Also makes you capable of anything, but without the bitterness

When you want speed, speed, and more speed, but you don’t want the bitterness of the VirtualObjectListView, a
FastObjectListView is your weapon of choice.

It operates just like a normal ObjectListView – only much faster.

Did I mention the speed?

GroupListView

A GroupListView is slightly different type of beast. You would use this creature when you want your users to be able
to group your model objects into different “partitions” depending on the column they last clicked.

See Using a GroupListView for more information.

4.4.2 2. How do I let the user edit the values shown in the list?

This really needs a page to itself: Cell Editing in an ObjectListView

4.4.3 3. How can I stop the user from making a column too narrow or too wide?

Columns have both minimumWidth and maximumWidth attributes. By default, these are -1, which means that no limit
is enforced. But if they are set to some other value, the column will be limited to the given minimum or maximum
width.

For example, this:

4.4. Learning to cook 23

ObjectListView Documentation, Release 1.2

self.titleColumn.minimumWidth = 30

will stop the “Title” column from becoming less than 30 pixels in width. This is useful for preventing users from
shrinking columns to 0 width and then not being about to find them again.

4.4.4 4. How can I stop the user from resizing a column?

There are some columns just don’t make sense to be resizable. A column that always shows a 16x16 status icon makes
no sense to be resizable. To make a column be fixed width and unresizable by the user, you can create the column with
a fixedWidth parameter:

self.statusColumn = ColumnDefn("", imageGetter=statusImageGetter, fixedWidth=16)

Or, if you decide after column creation that the column should be fixed width, you can call SetColumnFixedWidth:

self.olv1.SetColumnFixedWidth(0, 16) # the first column is fixed to 16 pixel wide

4.4.5 5. How can I make a column get bigger when the ObjectListView is made
bigger?

On most columns, the column’s width is static, meaning that it doesn’t change by itself. But sometimes it would be
useful if a column would resize itself to show more (or less) of itself when the user changed the size of the ListCtrl. For
example, the rightmost column of a personnel list might display “Comments” about that person. When the window
was made larger, it would be nice if that column automatically expanded to show more of the comments about that
person. You can make this happen by setting the isSpaceFilling attribute to True on that column.

An ObjectListView can have more than one space filling column, and they generally share the available space equally
between them (see the freeSpaceProportion attribute to change this).

You should be aware that as the ObjectListView becomes smaller, the space filling columns will become smaller
too, until they eventually disappear (have zero width). The minimumWidth and maximumWidth attributes still work
for space filling columns. So you can use the minimumWidth attribute to make sure that space filling columns don’t
disappear.

4.4.6 6. How can I change the colours of a row?

You install a rowFormatter on the ObjectListView.

A rowFormatter is a callable that accepts two parameters: a wx.ListItem, and the model object for that wx.ListItem.
The rowFormatter can change the formatting of the list item, or any of its other properties.

To show customers in red when they owe money, you could do this:

def rowFormatter(listItem, customer):
if customer.amountOwed > 0:

listItem.SetTextColour(wx.RED)

self.objectListView1.rowFormatter = rowFormatter

Due to the vaguarities of virtual lists, rowFormatter for a VirtualObjectListView operates slightly differently. In-
stead of being given a wx.ListItem, it is given a wx.ListItemAttr object. These object only support a limited sub-
set of wx.ListItem method, specifically those members related to the background color, text colour and font. See
wx.ListItemAttr for more details of what is supported.

24 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.4.7 7. How do I use checkboxes in my ObjectListView?

ObjectListView allows several ways of using check boxes. The simplest way is to call CreateCheckStateColumn:

self.objectListView1.CreateCheckStateColumn()

This creates a new column in the control that is solely for the purpose of showing a checkbox for each row. By default,
this column is the first column (you can pass an integer to CreateCheckStateColumn to create the column at a different
position). It results in something that looks like this:

If you don’t want to have a specific column just for the checkbox, you can use an existing column as the check box
column. To do this, call InstallCheckStateColumn with the column defn you want to show the check boxes. Be aware
that a column can only have one image, so that column will have the checkbox as its image, and will ignore anything
you might have set up with the imageGetter attribute.

So, if we installed the “Title” column as a checkbox column:

self.objectListView1.InstallCheckStateColumn(self.titleColumn)

It would produce something different:

4.4. Learning to cook 25

ObjectListView Documentation, Release 1.2

Each track now has the checkbox image instead of the track image.

The user can change checkboxes by clicking on the check box (obviously) or by selecting one or more rows and
pressing Space. Pressing Space toggles the values of the selected rows. Actually, it toggles the top-most check box,
and the sets all the other rows to have the same value.

Data-based Checkboxes

Both of these methods install checkboxes where the “checked-ness” of the rows are specific to that ObjectListView.
So if the same model object was visible in two different lists, it could be checked in one but not in the other.

But sometimes, the “checked-ness” of a row is part of the model object itself. Consider a customer management
system, where customers could be marked as active or not. This isActive property should be the same regardless
of which listview was showing the customer.

To define that checkbox column where the data comes from the model object, you would give that column a check-
StateGetter attribute:

isActiveColumn = ColumnDefn("Active?", fixedWidth=24, checkStateGetter="isActive")

Or instead of giving the checkbox its own column, you could combine the checkbox with the customers name:

nameColumn = ColumnDefn("Name", valueGetter="name", checkStateGetter="isActive")

Though this would stop the “Name” column from having its own image.

ObjectListViews support multiple check box columns.

26 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.4.8 8. How do I change the message that’s shown when the ObjectListView is
empty?

When an ObjectListView is empty, it can display a “this list is empty” type message. You alter the text and its font
using the following methods:

self.objectListView1.SetEmptyListMsg("This database has no rows")
self.objectListView1.SetEmptyListMsgFont(wx.FFont(24, wx.DEFAULT, face="Tekton"))

4.4.9 9. How can I show a list of dictionaries in the ObjectListView?

I have a list of dictionaries that hold the data I want to show. How can I show them in an ObjectListView?

In your ColumnDefn, set the valueGetter to the key of the data you want to display in that column. Everything
should just work. As a bonus, your dictionary will be automatically updated when the user edits a cell value (if the
ObjectListView is editable).

Example:

self.listOfDictionaries = [
{ "title":"Shiver", "artist": "Natalie Imbruglia", "album":"Counting Down the Days" },
{ "title":"Who’s Gonna Ride Your Wild Horses", "artist": "U2", "album":"Achtung Baby" },
{ "title":"So Cruel", "artist": "U2", "album":"Achtung Baby" },
{ "title":"The Fly", "artist": "U2", "album":"Achtung Baby" }

]
self.myOlv.SetColumns([

ColumnDefn("Title", "left", -1, "title"),
ColumnDefn("Artist", "left", -1, "artist"),
ColumnDefn("Album", "center", -1, "album")

])
self.myOlv.SetObjects(self.listOfDictionaries)

4.4.10 10. How can I reference the column in a valueGetter function?

I’ve got a super-duper valueGetter function, but it needs to know which column it’s being used for. How
can I do that?

Normally, valueGetter functions don’t know which column they are being used for. But there could be cases where
you might want to know the column: for example, you might have a central getter function that decides that to do
based on which column is being used.

So, imagine our super valueGetter looks like this:

def MySuperValueGetter(modelObject, columnDefn):
Do something clever here
return value

There are (at least) three possible solutions:

1. Use functools.partial():

import functools

for column in self.olv1.columns:
column.valueGetter = functools.partial(MySuperValueGetter, columnDefn=column)

This only works with Python 2.5 and later.

4.4. Learning to cook 27

ObjectListView Documentation, Release 1.2

2. Use local functions and default parameters:

for column in self.olv1.columns:
def myFunc(modelObject, col=column):

return MySuperValueGetter(modelObject, col)
column.valueGetter = myFunc

3. Subclass ColumnDefn and override GetValue():

class MyColumnDefn(ColumnDefn):

def GetValue(self, modelObject):
return MySuperValueGetter(modelObject, self)

4.4.11 11. How can I change the way group headers look?

Whoever decided on the colour scheme for group headers was an artistic incompetent. I want to use my
own snazzy scheme. How do I do that?

The formatting of group headers is strictly limited. wx.ListCtrl’s do not support any form of owner drawing, so
anything snazzy is currently impossible. Don’t even think about trying to do gradient fills or fancy text effects – it’s
just not possible.

What you can do is:

• change the colour of the text, via the groupTextColour variable.

• change the colour of background of the entire row, via the groupBackgroundColour variable. You can’t change
just the group header background. It is the whole row or nothing.

• change the font of the header via the groupFont variable. Remember that row height is fixed, so if you make the
font too big, the text will be truncated. The header row will not become bigger.

4.4.12 12. How can I only redraw the control every N seconds?

I’m writing a network monitor app. In some circumstances, the model objects can be updated 100 times
or more each second. But if I try to update the ObjectListView that often, the application grinds to a halt.
Is there is an easy way to make the ObjectListView not redraw so often?

Yes. You can use a BatchedUpdate adapter. This wraps an ObjectListView such that no matter how often you
update it, it will redraw at most once every N seconds (you supply the value of N).

So in your network monitor app, you need to added a line like this some time after the ObjectListView is created and
before it is used:

self.olv = ObjectListView.BatchedUpdate(self.olv, SECONDS_BETWEEN_UPDATES)

This wraps the original olv with an Adapter that intercepts some of the model updating commands
(SetObjects() or AddObjects() or RefreshObjects()) so that the control only redraws once every
SECONDS_BETWEEN_UPDATES seconds (SECONDS_BETWEEN_UPDATES is a constant defined by you some-
where else).

See Examples/BatchedUpdateExample.py for a demonstration and :ref:here for class docs
<batchedupdate-class>.

28 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.5 Editing Cell Values

ListCtrls are normally used for displaying information. The standard ListCtrl allows the value at column 0 (the primary
cell) to be edited, but nothing beyond that. ObjectListView allows all cells to be edited. Depending on how the data
for a cell is sourced, the edited values can be automagically written back into the model object.

The “editability” of an ObjectListView is controlled by the cellEditMode attribute. This attribute can be set to one of
the following values:

• ObjectListView.CELLEDIT_NONE Cell editing is not allowed on the control This is the default.

• ObjectListView.CELLEDIT_SINGLECLICK Single clicking on any subitem cell begins an edit operation
on that cell. Single clicking on the primary cell does not start an edit operation. It simply selects the row.
Pressing F2 edits the primary cell.

• ObjectListView.CELLEDIT_DOUBLECLICK Double clicking any cell starts an edit operation on that cell,
including the primary cell. Pressing F2 edits the primary cell.

• ObjectListView.CELLEDIT_F2ONLY Pressing F2 edits the primary cell. Tab/Shift-Tab can be used to
edit other cells. Clicking does not start any editing.

Individual columns can be marked as editable via the isEditable attribute (default value is True), though this only has
meaning once the ObjectListView itself is editable. If you know that the user should not be allowed to change cells in
a particular column, set isEditable to False. Be aware, though, that this may create some surprises, resulting in user
complaints like “How come I can’t edit this value by clicking on it like I can on all the other cells?”.

Once a cell editor is active, the normal editing conventions apply:

• Enter or Return finishes the edit and commits the new value to the model object.

• Escape cancels the edit.

• Tab commits the current edit, and starts a new edit on the next editable cell.

• Shift-Tab commits the current end, and starts a new edit on the previous editable cell.

4.5.1 Deciding on a cell editor

When a cell is to be edited, we need to decide what sort of editor to use.

There are three ways this decision can be made:

1. Column based decision

Most simply, the column can be configured with a cellEditorCreator attribute. When a cell in this column is to
be edited, the cellEditorCreator will be invoked. This attribute must be set to a “cell editor factory” callable.
A “cell editor factory” must be a callable that accepts three parameters:

• the ObjectListView that needs the editor

• the index of the row to be edited

• the index of the subitem to be edited

This factory should return a fully configured widget that can edit the value at that cell.

2. Event based decision

If this is not enough, the programmer can have complete control over the process by listening for a cell editing starting
event (ObjectListView.EVT_CELL_EDIT_STARTING). Within the handler for this event, the programmer can
create and configure any sort of widget they like and then return this widget via the newEditor attribute of the event.

4.5. Editing Cell Values 29

ObjectListView Documentation, Release 1.2

If the shouldConfigureEditor attribute of the event is True (this is the default), the ObjectListView will perform
all the normal default configuration of the cell editor. This includes setting the controls value, positioning it correctly
and hooking up any required events. If shouldConfigureEditor is False, it is assumed that all configuration
has already been done and nothing else will be done to the widget.

3. Registry based decision

Most generally, you can register a “cell editor factory” for a type of object. This is done using
RegisterCreatorFunction method of the CellEditorRegistry.

For example, there is no standard editor for a wx.Colour. To handle the editing of colours, we would need a factory
callable, and then to register it with the CellEditorRegistry. Which migh look something like this:

def makeColourEditor(olv, rowIndex, subItemIndex):
odcb = OwnerDrawnEditor.ColourComboBox(olv)
OwnerDrawnComboxBoxes don’t generate EVT_CHAR so look for keydown instead
odcb.Bind(wx.EVT_KEY_DOWN, olv._HandleChar)
return odcb

CellEditorRegistry().RegisterCreatorFunction(type(wx.BLACK), makeColourEditor)

By default, the cell registry is configured with editors for the following standard types: bool, int, long, str,
unicode, float, datetime, date, time.

You can replace the standard editors with editors of your own devising using the registry. So if someone make a better
date-time editor (yes, please!), they could use it to edit all datetime values by doing this:

import datetime
...
CellEditorRegistry().RegisterCreatorFunction(datetime.datetime, makeBetterDateTimeEditor)

4.5.2 Getting and Setting the Editors value

A cell editor must implement both GetValue and SetValue methods.

Once the cell editor has been created, it is given the cell’s value via the control’s SetValue method.

When the user has finished editing the value, the new value in the editor is retrieved via the GetValue method.

4.5.3 Updating the Model Object

Once the user has entered a new value into a cell and pressed Enter, the ObjectListView tries to store the modified
value back into the model object. There are three ways this can happen:

1. ObjectListView.EVT_CELL_EDIT_FINISHING Event Handler

You can create an event handler for the EVT_CELL_EDIT_FINISHING event (see below). In that handler, you would
write the code to get the modified value from the editor, put that new value into the model object, and then call
Veto on the event, so that the ObjectListView knows that it doesn’t have to do anything else. You will also need to
call at least RefreshItem() or RefreshObject(), so that the changes to the model object are shown in the
ObjectListView.

There are cases where this is necessary, but as a general solution, it doesn’t fit my philosophy of slothfulness.

30 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

2. Via the Column’s valueSetter attribute

You can set the valueSetter attribute on the corresponding ColumnDefn. Like valueGetter, this attribute is
quite flexible:

• It can be a callable that accepts the model object and the new value:

def updateSalary(person, newValue):
person.SetSalary(newValue)
if person.userId == self.currentUser.userId:

self.NotifySupervisorOfSalaryChange()

ColumnDefn("Salary", ... valueSetter=updateSalary)

• It can be the name of a method to be invoked,. This method must accept the new value as its sole parameter.
Example:

class Track():
...
def SetDateLastPlayed(self, newValue):

self.dateLastPlayed = newValue

ColumnDefn("Last Played", ... valueSetter="SetDateLastPlayed")

• It can be the name of an attribute to be updated. This attribute will not be created: it must already exist. Example:

ColumnDefn("Last Played", ... valueSetter="dateLastPlayed")

• For dictionary like model objects, it can be the key into the dictionary. The key would commonly be a string,
but it doesn’t have to be.

3. Via the Column’s valueGetter attribute

Updating the value through the value-GETTER attribute seems wrong somehow. In practice, it is neat and commonly
used.

If the valueGetter attribute is the name of an attribute, or the key into a dictionary, it will very commonly be the
same place where any modified value should be written.

So if a value needs to be written back into the model, and there is no valueSetter attribute, the ObjectListView
will try to use the valueGetter attribute to decide how to update the model.

4.5.4 After the update

If the model is updated, the row will be automatically refreshed to display the new data.

If the user enters a new value, presses Enter, and the value in the ObjectListView doesn’t change, then almost
certainly the ObjectListView could not automagically update the model object.

In that case, you will need to track down, which of the above three strategies should be being used, and why it is not.

4.5.5 How Can You Customise The Editing

To do something other than the default processing, you can listen for two events: Ob-
jectListView.EVT_CELL_EDIT_STARTING and ObjectListView.EVT_CELL_EDIT_FINISHING.

MORE HERE

4.5. Editing Cell Values 31

ObjectListView Documentation, Release 1.2

4.6 Using a GroupListView

A flat list is enough in many cases, but sometimes it would be really nice to be able to put the model objects into
groups, making it easier for users to see where something belongs. It’s nice that our database of songs can be sorted
by “Album,” but it would be even nicer if the control was able to put all the tracks for an album together under their
own title.

This is what a GroupListView does. And it looks like this:

32 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.6.1 Understanding the process

To make a GroupListView work, the control needs to collect the model objects into different groups. This is done in
the following steps:

1. Calculate a “group key” for each object.

2. All objects with the same group key are placed into the same group.

3. The group key is converted into a string, which become the title of the group.

Understanding this simple process is the key to working with a GroupListView. Remember this, and you will have
conquered the GroupListView.

4.6.2 Getting the “group key”

The “group key” for an object is normally whatever value the object has in the “group by” column. So if list of tracks
is being grouped by the “Artist” column, the group key for a track will be, for example, “Coldplay” or “Nickelback”.

However, that isn’t always the best group key. For example, without any other configuration, if we group our tracks
by the “Last Played” column, every track ends up in it’s own group (bonus points if you can explain why).

If we want the tracks to be more usefully grouped, we will need to install a group key getter for the “Last Played”
column. In this case, we want all tracks that were played in the same month to be placed into the same group. So for
each track, we want to calculate the month it was last played and return that as the group key.

We would do this by creating a function and then installing it as the group key getter for the column:

def lastPlayedGroupKey(track):
We only want to group tracks by the month in which they were played
return datetime.date(track.lastPlayed.year, track.lastPlayed.month, 1)

...
ColumnDefn("Last Played", "left", 100, "lastPlayed", groupKeyGetter=lastPlayedGroupKey)

The groupKeyGetter can be specified in the same ways that a valueGetter can be specified:

1. a callable that accepts the model whose group key should be calculated.

2. a string which will be treated as:

• the name of parameter-less instance method

• the name of an instance variable

• an index into a dictionary-like object

3. an integer, used as an index into a indexable collection

Grouping by initial letter

One common pattern is for objects to be grouped by the first letter of a string value. For example on the “Title”
column, all tracks starting with “A” would be grouped together. This is so common that there is a built-in way to do it:
set useInitialLetterForGroupKey to True for a column:

ColumnDefn("Title", "left", 120, "title", imageGetter=musicImage, useInitialLetterForGroupKey=True)

4.6. Using a GroupListView 33

ObjectListView Documentation, Release 1.2

4.6.3 Converting the “group key” to title

Once the group keys have been calculated for each model object, and all the model objects with the same group key
have been collected into their respective groups, we are almost ready to present the groups to the user.

The final remaining step is to decide that to call the group. The name of a group is normally its group key converted to
a string. This works well when the group key is a string, and reasonably well for other data types, but sometimes you
need something different. In those cases, you can install a groupKeyConverter on the column:

def lastPlayedGroupKeyConverter(groupKey):
Convert the given group key (which is a date) into a representation string
return groupKey.strftime("%B %Y")

...
ColumnDefn("Last Played", "left", 100, "lastPlayed", groupKeyGetter=lastPlayedGroupKey,

groupKeyConverter=lastPlayedGroupKeyConverter)

Here our group key is the first of the month in which the track was last played. Without a groupKeyConverter, the title
of the groups would look like “2008/05/01”. But with our groupKeyConverter, the title of the groups end up like “May
2008”, which is nicer.

The groupKeyConverter operates in the same way that a stringConverter operates.

4.6.4 Using SetGroups() directly

All of the above steps are used when you give the GroupListView a straight list of model objects, leaving the Grou-
pListView to convert the model objects into groups. It is also possible for the programmer to manually create the
groups and then tell the GroupListView to show the groups that the programmer has created.

Each group is represented by a ListGroup object. A ListGroup basically consists of a title and a list of model objects
that are to be shown in the groups.

Once the programmer has created a list of ListGroup objects, they should be given to SetGroups() method. The order
of the groups in the list, and the order of the model objects in the group are the order in which they will be presented
to the user.

If you manually create the groups, you will need to handle sorting yourself, or turn off sorting altogether. This is
necessary since the GroupListView will not know how to recalculate the groups.

4.6.5 Customizing using events

A GroupListView triggers several events which allow the programmer to change key behaviours of the control.

EVT_GROUP_CREATINGTriggered when a new collection of groups has been created but not yet displayed to the user.
The handler of this event can make any changes they like to the groups, including the names of
the group and the members.

EVT_GROUP_SORTTriggered when the groups need to be sorted. Both the groups themselves and the model
objects within each group should be sorted. The handler of this event should called Handled()
on the event, otherwise normal sort processing will occur.

EVT_EXPANDINGTriggered when one or more groups is being expanded. The handler of this event can call
Veto() to prevent the groups from being expanded.

EVT_EXPANDEDTriggered after one or more groups have been expanded. This is a notification event only.
EVT_COLLAPSINGTriggered when one or more groups is being collapsed. The handler of this event can call

Veto() to prevent the groups from being collapsed.
EVT_COLLAPSEDTriggered after one or more groups have been collapsed. This is a notification event only.

34 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.6.6 Other capabilities

A GroupListView can stop showing groups and revert to a straight ObjectListView by calling SetShowGroups(False).

4.7 Using a ListCtrlPrinter

A ListCtrlPrinter takes an ObjectListView (or plain old wx.ListCtrl) and effortlessly turns it into a pretty
report. With only two lines of code, you can produce a nice report like this:

4.7. Using a ListCtrlPrinter 35

ObjectListView Documentation, Release 1.2

4.7.1 When would I want to use it?

Your shiny new application is finished to perfection — and it’s a week ahead of schedule (we’re imagining here, so
let’s be completely unrealistic). After your demonstration to The Management, the CEO says, “It’s great! I love it!
But I want to have all that information as a report. And I want to be able to fiddle with the columns in the report, resize

36 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

them, any way I want. It has to be sortable, and groupable, just like we can see on the screen there. And of course, we
have to be able to print preview it before we print it. And can we have it finished by tomorrow?” You consider briefly
whether you should mention the PrintScreen key, but you doubt he would be enthused with that solution.

Management love reports. Programmers aren’t so keen. They often appear as an afterthought to the requirement. Yet
producing nice looking reports is not a trivial task. If you using other languages, you can buy a commercial product
(if you have Blizzard’s budget), but with wxPython, there are not that many options. You normally have to write it all
yourself, which can be frustrating. wx’s printing scheme can cause even strong programmers to go weak in the knees
– even with Robin’s wonderful book for reference.

For a lazy and vain programmer like myself, what I really want is something that takes no effort to implement, yet
produces wonderful results. I want to be able to go back to my CEO the same day, show him the nice looking reports
that do exactly what he wanted, and then remind him about my overdue raise.

The ListCtrlPrinter is designed to be just such a solution.

4.7.2 How do I use it in my project?

As always, the goal is for this to be as easy to use as possible. A typical usage should be as simple as:

printer = ListCtrlPrinter(self.myListCtrl, "My Report Title")
printer.PrintPreview()

This code create a new ListCtrlPrinter, telling it what ListCtrl it should print and what the report should
be titled. Then a print preview of the report is opened.

A more complete example might look like this:

printer = ListCtrlPrinter(self.lv, "Graviton Collision Statistics")
printer.ReportFormat = ReportFormat.Normal("Lucida Bright")
printer.ReportFormat.IsColumnHeadingsOnEachPage = True

printer.PageHeader("Monthly Bad Science Report")
printer.PageFooter("Bright Ideas Software", "%(date)s", "%(currentPage)d of %(totalPages)d")
printer.Watermark("Work hard!")

printer.PrintPreview(self)

4.7.3 Primary commands

The ListCtrlPrinter has commands that match the normal printing commands, which should be hooked into
the menu structure of your application.

• PageSetup() Opens the normal “Page Setup” dialog that allows the user to choose the page orientation and
margins, as well as choose the printer for output.

• PrintPreview() Open a print preview dialog, from which the user can also print the report.

• Print() Opens the “Print” dialog that lets the user choose which printer, the pages and other details before
printing the report.

4.7.4 Working in a structured environment

A report consists of several blocks, each of which stacks vertically. The structure of a report is like this:

4.7. Using a ListCtrlPrinter 37

ObjectListView Documentation, Release 1.2

The PageHeader and PageFooter repeat on each page (obviously). The ColumnHeader repeats on each page, depending
on the ReportFormat options.

4.7.5 Controlling the appearance

The formatting of a report is controlled completely by the ReportFormat object of the ListCtrlPrinter. To
change the appearance of the report, you change the settings in this object.

These properties control the appearance of the report as a whole:

• IncludeImages Should images from the ListCtrl be included in the report?

• IsColumnHeadingsOnEachPage If this is True, the column headers will be repeated at the top of each
page.

• IsShrinkToFit If this is True, the report will be shrunk so that all the column of the ListCtrl can fit

38 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

within the width of page.

• UseListCtrlTextFormat If this is True, the format (text font and color) of the rows will be taken from
the ListCtrl itself, rather than the Cell.BlockFormat object. Useful if your ListCtrl has fancy
formatting on the rows that you want to replicate in the printed version.

As was illustrated above, a report consists of various sections (called “blocks”). Each of these blocks has a
matching BlockFormat object in the ReportFormat. To modify the appearance of a block, you mod-
ify its matching BlockFormat object. So, to modify the format of the page header, you change the
ReportFormat.PageHeader object.

A ReportFormat object has the following properties which control the appearance of the matching sections of the
report:

• PageHeader

• ListHeader

• ColumnHeader

• GroupTitle

• Row

• ListFooter

• PageFooter

These properties return BlockFormat objects, which have the following properties:

• CanWrap If the text for this block cannot fit horizontally, should be wrap to a new line (True) or should it be
truncated (False)?

• Font What font should be used to draw the text of this block

• Padding How much padding should be applied to the block before the text or other decorations are drawn?
This can be a numeric (which will be applied to all sides) or it can be a collection of the paddings to be
applied to the various sides: (left, top, right, bottom).

• TextAlignment How should text be aligned within this block? Can be wx.ALIGN_LEFT,
wx.ALIGN_CENTER, or wx.ALIGN_RIGHT.

• TextColor In what color should be text be drawn?

The blocks that are based on cells (PageHeader, ColumnHeader, Row, PageFooter) can also have the following prop-
erties set:

• AlwaysCenter Will the text in the cells be center aligned, regardless of other settings?

• CellPadding How much padding should be applied to this cell before the text or other decorations are
drawn? This can be a numeric (which will be applied to all sides) or it can be a collection of the paddings
to be applied to the various sides: (left, top, right, bottom).

• GridPen What Pen will be used to draw the grid lines of the cells?

In addition to these properties, there are some methods which add various decorations to the blocks:

• Background(color=wx.BLUE, toColor=None, space=0) This gives the block a solid color
background (or a gradient background if toColor is not None). If space is not 0, space pixels will be
subtracted from all sides from the space available to the block.

• Frame(pen=None, space=0) Draw a rectangle around the block in the given pen

• Line(side=wx.BOTTOM, color=wx.BLACK, width=1, toColor=None, space=0, pen=None)
Draw a line on a given side of the block. If a pen is given, that is used to draw the line (and the other

4.7. Using a ListCtrlPrinter 39

ObjectListView Documentation, Release 1.2

parameters are ignored), otherwise a solid line (or a gradient line is toColor is not None) of width pixels
is drawn.

4.7.6 Can’t you just show me what these things do?

4.7.7 Understanding the process

Use The Source Luke (at least until I write this part of the docs)

4.7.8 Other things to be aware of

• A ListCtrlPrinter only works on ListCtrls that are in report view. It will ignore any ListCtrl that is in any
other view.

• You can set the left Padding of the ColumnHeader format and Row format to different values. This results in
the column headers not lining up with the rows. This should be understood as a feature.

• For reasons that are still not clear to me, images that come from BMP files will not print on some (most?)
printers. Images that come from PNG and other formats work fine.

• The ListCtrlPrinter is not designed to be general purpose reporting solution. There are no running totals,
macro language, or ODBC data sources. It just prints ListCtrls.

4.8 Frequently Asked Questions

Some questions and issues surface regularly on the Forums or in emails. This section has several of the most common
questions. Please read the questions before asking questions on the Forum. Several people have been known to have
blood pressure problems.

4.8.1 What platforms does it work on?

ObjectListView has been extensively tested on Windows and somewhat tested on Linux (Ubuntu).

I have no experience on other platforms but would welcome feedback. I’d be especially interested if someone from
MacLand could test it, especially with native mode enabled.

40 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

4.8.2 Can an ObjectListView have rows of different heights? Can it word-wrap?

No.

ObjectListView is a wrapper for the underlying ListCtrl. It makes a ListCtrl much easier to use, but it can’t change the
control’s basic behaviour. One limitation of a ListCtrl is it that cannot have rows of different heights. There is no way
to make one row be taller than other rows. It’s just not possible. So there is no way to word wrap a long line on just
one row either.

If being able to have rows of different heights is essential to you, ObjectListView is not your solution.

4.8.3 Why doesn’t the ObjectListView auto-update when I change my model ob-
jects?

I have ObjectListView that’s showing my model objects. But when I change the values in my model, the
ObjectListView doesn’t update. What’s going wrong here?

Nothing. That’s what it is supposed to do.

The ObjectListView knows nothing about your model objects, and particularly it doesn’t know when they have been
changed. Only you know that. When you know that a model object has changed and needs to be updated, you can
either call RefreshObject() to update just one object, or you can call RepopulateList() to rebuild everything at once.

4.8.4 Why doesn’t it do some-feature-I-really-want?

It could be that I simply haven’t thought of it. Or it could be that I have thought of it but it just isn’t possible.

Remember that ObjectListView is just a wrapper around wx.ListCtrl. It can make the ListCtrl a little easier to use, and
can add some helper functions, but it can’t change the basic behaviour of the control.

One thing I would really like to add is owner drawing. But this is not supported by a ListCtrl, so ObjectListView
cannot have it either.

4.8.5 Why is the text of the first column indented by about 20 pixels?

This shows up when you have a ListCtrl that doesn’t have an icon in the first column. The control still leaves space for
the icon, even when there isn’t one.

If the ListCtrl doesn’t have a small image list, this indent disappears. But as soon as the control has a small image
list, even an empty one, the text of the first column will be indented. Unfortunately, almost all ObjectListViews have
a small image list, since showing sort indicators in the column headers uses the small image list.

So, if you really want to get rid of this indent, make an ObjectListView which isn’t sortable (pass “sortable=False” to
the constructor) and don’t add any images to the control. The indent will disappear – but the list will not be sortable.

4.9 Major Classes Reference

• :ref:objectlistview-class

• :ref:columndefn-class

• :ref:grouplistview-class

• :ref:batchedupdate-class

4.9. Major Classes Reference 41

ObjectListView Documentation, Release 1.2

4.9.1 ObjectListView

4.9.2 ColumnDefn

4.9.3 GroupListView

4.9.4 BatchedUpdate

4.10 Change Log

2008-09-04 23:12 (#250) - setup.py

• v1.2

2008-09-04 22:30 (#249) - ObjectListView/ObjectListView.py

• Correct an incomplete comment

2008-09-04 22:30 (#248) - Examples/SqlExample.py

• Correctly locate primary key when there is a WHERE clause

2008-09-04 22:30 (#247) - Examples/BatchedUpdateExample.py

• Nicely format file size column

2008-09-04 22:29 (#246) - docs/whatsnew.rst, docs/index.rst, docs/recipes.rst

• Final changes for v1.2

2008-09-02 23:25 (#245) - docs/features.rst, docs/.static/icon.ico, docs/whatsnew.rst, docs/listCtrlPrinter.rst, docs/conf.py, docs/majorClasses.rst, docs/index.rst

• Updated in preparation for v1.2 release

2008-09-02 23:22 (#244) - Examples/UsingVirtualListExample.py

• Simplified initial insertions (removed executemany)

2008-09-02 23:21 (#243) - ObjectListView/__init__.py

• Added BatchedUpdate

2008-09-02 23:20 (#242) - Examples/BatchedUpdateExample.py

• First version

2008-09-02 23:20 (#241) - ObjectListView/ObjectListView.py

• Added BatchedUpdate adaptor

• Improved speed of selecting and refreshing by keeping a map of objects to indicies

• Added GetIndexOf()

• Removed flicker from FastObjectListView.AddObjects() and RefreshObjects()

2008-08-31 23:09 (#240) - Examples/BatchedUpdateExample.py

42 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Scanning now works

2008-08-31 20:58 (#239) - Examples/BatchedUpdateExample.py

• First hand done layout

2008-08-31 18:07 (#238) - Examples/BatchedUpdateExample.py

• Initial checkin

2008-08-28 22:50 (#237) - CHANGELOG.txt, docs/changelog.rst

• Rebuilt change log

2008-08-28 22:41 (#235) - test/test_ObjectListView.py

• Added filtering tests

2008-08-28 22:41 (#234) - ObjectListView/ObjectListView.py

• Added GetObjects() and GetFilteredObjects()

• Added resortNow parameter to SetSortColumn()

2008-08-28 22:39 (#233) - ObjectListView/Filter.py

• Added Filter.Chain

• Added text constructor parameter to TextSearch

2008-08-28 01:22 (#232) - ObjectListView/ObjectListView.py

• Correct AddObjects() when a filter is in effect

• Made RebuildGroups() public

2008-08-28 01:21 (#231) - Examples/Demo.py

• Implement search controls on several tabs

2008-08-28 01:20 (#230) - ObjectListView/Filter.py

• Make text search handle non-report views better

2008-08-27 23:59 (#229) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/Filter.py

• Filters work

2008-08-25 10:51 (#225) - Examples/Demo.py

• Use AddObjects() for “Add 1000” commands

2008-08-25 10:50 (#224) - ObjectListView/ObjectListView.py

• Added AddObjects()/RemoveObjects() and friends

• Removed duplicate code when building/refreshing/adding objects

• One step closer to secondary sort column support

2008-08-22 19:38 (#220) - docs/listCtrlPrinter.rst

• Added formatting picture

2008-08-20 22:21 (#219) - Examples/Demo.py

• Changed to use new properties on ListViewPrinter

2008-08-20 22:20 (#218) - ObjectListView/ListCtrlPrinter.py

4.10. Change Log 43

ObjectListView Documentation, Release 1.2

• Consistently use properties on ListCtrlPrinter (ReportFormat, PageFooter, PageHeader, Watermark and
PrintData are now all properties)

• Removed ListCtrlPrinter.PageHeader(), ListCtrlPrinter.PageFooter(), ListCtrlPrinter.Watermark(), since
they are now replaced with properties (and make more sense that way)

2008-08-20 00:28 (#217) - docs/.static/icon.ico, docs/images/listctrlprinter-example2.png, docs/images/listctrlprinter-structure.png, docs/listCtrlPrinter.rst, docs/.templates/layout.html, Examples/Demo.py

• Added lots of documentation about ListCtrlPrinter

2008-08-20 00:27 (#216) - ObjectListView/ListCtrlPrinter.py

• Moved AlwaysCenter and CanWrap to BlockFormat

• Improved docs

2008-08-18 10:04 (#214) - THANKS.txt

• Added Werner Bruhin to THANKS

2008-08-18 10:03 (#213) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVEvent.py

• Handle model objects that cannot be hashed

• Added editing started and finished events

2008-08-18 10:02 (#212) - Examples/SqlExample.py

• Reorganized code slightly

2008-08-18 00:37 (#211) - Examples/SqlExample.py

• Initial checkin

2008-08-17 21:47 (#210) - ObjectListView/WordWrapRenderer.py

• Second attempt at avoid bug in wordwrap module

2008-08-16 23:31 (#209) - ObjectListView/WordWrapRenderer.py

• Allow truncated text to be vertically aligned

2008-08-16 23:24 (#208) - ObjectListView/ListCtrlPrinter.py

• Use RunningBlockPusher to simplify code

• Allow truncated strings to be vertically aligned

2008-08-16 22:58 (#207) - ObjectListView/ListCtrlPrinter.py

• Centralize cell width calculation (again)

• Gracefully handle substitutions that fail

2008-08-16 22:55 (#206) - Examples/Demo.wxg, Examples/Demo.py

• All control changes on ListCtrlPrinting now update the preview

2008-08-16 10:23 (#205) - ObjectListView/WordWrapRenderer.py

• Avoid bug in wordwrap module

• use DCClipper

• Simplified some code

2008-08-16 09:47 (#204) - ObjectListView/ListCtrlPrinter.py

44 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Column width is now calculated by the column headers only

• Added ListCtrlPrinter.GetPrintData()

• Make sure print data is destroyed after printing

• Remove print statements

2008-08-16 09:38 (#203) - ObjectListView/ObjectListView.py

• Added ensureVisible parameter to SelectObject()

2008-08-13 00:09 (#199) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVPrinter.py, ObjectListView/ListCtrlPrinter.py

• Allow text to be vertically aligned in cells

• Improved some docs

• Renamed OLVPrinter to be ListCtrlPrinter

2008-08-13 00:07 (#198) - Examples/Demo.wxg, Examples/Demo.py

• Changed OLVPrinter to be ListCtrlPrinter

2008-08-13 00:06 (#197) - docs/images/listctrlprinter-example1.png, docs/images/grouplist-example1.png, docs/listCtrlPrinter.rst, docs/.templates/layout.html, docs/faq.rst, docs/index.rst, docs/.static/listCtrlPrinter-icon.png, docs/.static/majorClasses-icon.png

• Began documenting ListCtrlPrinter

2008-08-12 19:40 (#195) - ObjectListView/OLVPrinter.py

• Added TooMuch() formatting

• Create instance variables normally in ReportFormat – rather than using setattr()

• Simplified scaling of rows

• Changed some method names to better reflect their more generic role

• Changed variable to refer to a listview rather than an objectlistview

2008-08-08 11:36 (#194) - Examples/Demo.wxg, Examples/Demo.py

• Completely reworked ListCtrl printing tab

2008-08-08 11:35 (#193) - test/test_ObjectListView.py

• Make adjustments for GroupListView now being virtual

2008-08-08 11:34 (#192) - ObjectListView/OLVPrinter.py

• Added ImageDecoration

• Removed report title and footer

• Corrected (and optimized) counting pages and skipping pages

2008-08-06 20:44 (#191) - ObjectListView/OLVPrinter.py

• Row height is now calculate for the whole row, not just the current slice

• Separated water format from the watermark text

• Allow blocks to decide not to print themselves

• Use a dummy DC when counting total pages

2008-08-06 10:14 (#190) - Examples/Demo.wxg, Examples/Demo.py

• Rearranged Printing panel

4.10. Change Log 45

ObjectListView Documentation, Release 1.2

• Inline print preview has water mark

2008-08-05 22:43 (#189) - ObjectListView/ObjectListView.py

• GroupListView is now implemented as a virtual list

• Moved putBlankLineBetweenGroups into GroupListView (and out of ObjectListView)

2008-08-05 22:40 (#188) - ObjectListView/__init__.py

• Added ListGroup into classes exported from the module

2008-08-05 22:39 (#187) - Examples/Demo.wxg, Examples/Demo.py

• ListCtrl print previewing now works more or less completely

2008-08-04 16:43 (#186) - Examples/Demo.wxg, Examples/Demo.py

• Added List printing example tab (not yet complete)

2008-08-04 16:43 (#185) - ObjectListView/OLVPrinter.py

• Header and footers are now ThreeCellBlock

• Added substitutions on text strings

• Print garbage pages to a MemoryDC

• Added IncludeImages and UseListCtrlTextFormat into ReportFormat

• Added ReportFormat.Minimal()

• Column headers can now be repeated on each page

2008-08-04 16:37 (#184) - ObjectListView/__init__.py

• Added list printing stuff

2008-08-02 10:26 (#183) - ObjectListView/OLVPrinter.py

• Now includes images

• Cells can now be truncated

• Decorations can now be either over or under their block

2008-08-02 10:24 (#182) - ObjectListView/ObjectListView.py

• Added putBlankLineBetweenGroups to GroupListView

• Handle None as aspect values

2008-08-02 10:23 (#181) - ObjectListView/WordWrapRenderer.py

• Changed to use wx.lib.wordwrap

• Added DrawTruncatedString()

2008-08-02 10:22 (#180) - Examples/GroupExample.py, Examples/ExampleModel.py, Examples/Demo.py

• Remove locale dependence from date parsing

2008-07-31 23:50 (#179) - ObjectListView/OLVPrinter.py

• Watermarks now work

2008-07-31 21:38 (#178) - ObjectListView/OLVPrinter.py

• AlwaysCenterColumnHeader and IsShrinkToFit now work

2008-07-31 11:51 (#177) - ObjectListView/OLVPrinter.py

46 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Margins, scaling and printer boundries all now work

2008-07-31 10:49 (#176) - test/test_OLVPrinter.py

• Added TextBlock tests

2008-07-31 10:48 (#175) - ObjectListView/OLVPrinter.py

• Made work with plain ListCtrls

• Cell decorations and grids now work

• Added gradient lines and backgrounds

2008-07-30 17:06 (#174) - ObjectListView/ObjectListView.py

• Removed reference to testing variable ‘__rows’

2008-07-30 17:05 (#173) - docs/groupListView.rst, docs/index.rst, docs/gettingStarted.rst

• COrrected some small mistakes in docs

2008-07-30 11:46 (#172) - CHANGELOG.txt, docs/changelog.rst, setup.py

• V1.1 release

2008-07-28 22:10 (#170) - ObjectListView/OLVPrinter.py

• Move grid drawing into CellBlock. Removed GridDecoration

• Added Bucket and use them instead of dictionaries

• Correctly handle GroupListView

• Made compatible with plain ListCtrls

2008-07-28 22:04 (#169) - ObjectListView/WordWrapRenderer.py

• Made all methods static

2008-07-27 00:22 (#168) - ObjectListView/OLVPrinter.py

• Added GridDecoration, FrameDecoration

• Changed technique of page header/footers

2008-07-26 00:30 (#167) - docs/features.rst, docs/whatsnew.rst, docs/groupListView.rst, docs/.templates/layout.html, docs/conf.py, docs/majorClasses.rst, docs/changelog.rst, docs/index.rst, docs/gettingStarted.rst, docs/.static/groupListView-icon.png, docs/recipes.rst

• Added documentation about GroupListView

2008-07-26 00:28 (#166) - Examples/GroupExample.py, Examples/Demo.py, Examples/SimpleExample1.py, Examples/SimpleExample2.py

• Minor corrections to examples

2008-07-26 00:27 (#165) - ObjectListView/ObjectListView.py

• Correctly trigger and handle group related events

• Made EmptyListMsg work under Linux

• Correct location of expand/collapse images under Linux

• Removed some isinstance() and callable() tests

2008-07-26 00:23 (#164) - ObjectListView/__init__.py

• Export group related events

2008-07-26 00:23 (#163) - ObjectListView/OLVEvent.py

4.10. Change Log 47

ObjectListView Documentation, Release 1.2

• Complete implementation of group related events

2008-07-26 00:21 (#162) - ObjectListView/WordWrapRenderer.py

• Factored out _CalculateLineHeight()

• Set up a nicer font under Linux

2008-07-26 00:20 (#161) - test/test_OLVPrinter.py

• Initial checkin

2008-07-25 15:52 (#160) - ObjectListView/WordWrapRenderer.py

• Initial checkin

2008-07-25 13:31 (#159) - ObjectListView/OLVPrinter.py

• Pagination now works correctly

• Correctly calculates total number of pages

2008-07-24 21:07 (#158) - ObjectListView/OLVPrinter.py

• Before changing to use ReportEngine

2008-07-24 10:39 (#157) - docs/groupListView.rst

• Initial checkin

2008-07-23 11:26 (#154) - docs/features.rst

• Included GroupListView in features

2008-07-23 11:25 (#153) - ObjectListView/OLVPrinter.py

• More WIP

2008-07-23 11:24 (#152) - ObjectListView/ObjectListView.py

• Consistently use GetSortColumn()

• Updated some docs

2008-07-19 15:57 (#151) - ObjectListView/OLVPrinter.py

• Work in progress

2008-07-17 20:40 (#150) - ObjectListView/ObjectListView.py

• Added ability to turn off groups in GroupListView

• Added ability to lock the group by column

• Changed ObjectListView to use ‘innerList’

• SetColumns() can now retain the current model objects

• Optimized sort key getter and munging. 30% faster!

2008-07-17 20:34 (#147) - Examples/Demo.wxg, Examples/Demo.py

• Added Group tab to demo

2008-07-17 20:34 (#146) - Examples/GroupExample.py, Examples/ExampleModel.py, Examples/SimpleExample1.py, Examples/SimpleExample2.py

• Changed to use ExampleModel.py

2008-07-17 15:03 (#145) - ObjectListView/ObjectListView.py

48 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Refactored VirtualObjectListView and FastObjectListView to have common base class (AbstractVirtu-
alObjectListView). This made FastObjectListView much simpler

• Added GetPrimaryColumn()

2008-07-17 13:19 (#144) - Examples/GroupExample.py, Examples/Demo.py

• In Demo.py, give the simple list a separate column for the checkbox

• In GroupExample.py, give the list a checkbox and make the control editable.

2008-07-17 13:17 (#143) - test/test_ObjectListView.py

• Fixed all problems with tests

• GroupListView now passes all general ObjectListView tests

2008-07-17 13:15 (#142) - ObjectListView/OLVEvent.py

• Added new group events

2008-07-17 13:15 (#141) - ObjectListView/ObjectListView.py

• Allow GroupListView to have checkboxes too

• GroupListView now copy objects to clipboard correctly

• Use native renderer for expand/collapse images

• Added “handleStandardKeys”

• GetSelectedObject() now processes at most 2 rows

• Correctly calculate primary column instead of just assuming column 0

• Correctly handle column images

• Search-by-typing now works in GroupListView

• Don’t allow editing of groups and empty rows

• Added groupTitleSingleItem and groupTitlePluralItems to ColumnDefn

2008-07-15 15:39 (#140) - Examples/GroupExample.py

• Example showing capabilites of GroupListView

2008-07-15 15:38 (#139) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVEvent.py

• First take at groupable ListCtrl

2008-07-14 20:46 (#138) - ObjectListView/ObjectListView.py

• Added CopySelectionToClipboard and CopyObjectsToClipboard

2008-07-08 20:37 (#135) - ObjectListView/ObjectListView.py

• Headers can have now have images

• Fixed Linux specific issues

• Fixed cell editor bug when double clicking out of list bounds

2008-06-27 22:13 (#134) - ObjectListView/ObjectListView.py

• Updated docs to match v1.0.1

2008-06-23 19:50 (#132) - Examples/UsingVirtualListExample.py

• Replace hardcoded path with wx.StandardPaths

4.10. Change Log 49

ObjectListView Documentation, Release 1.2

2008-06-22 22:35 (#128) - ObjectListView/ObjectListView.py

• Fixed bug where an imageGetter that returned 0 was treated as if it returned -1 (i.e. no image)

2008-06-20 00:16 (#126) - TODO.txt, setup.py, README.txt

• Changed feature list

• Changed download location

2008-06-20 00:15 (#125) - docs/features.rst, docs/whatsnew.rst, docs/.templates/layout.html, docs/conf.py, docs/majorClasses.rst

• Update to version 1.0.1

• Added “Class Docs” section to menu

• Added new sections to Features and What’s New

2008-06-20 00:12 (#124) - Examples/SimpleExample1.py

• Enable logging

2008-06-20 00:11 (#123) - Examples/Demo.py

• Added more checkboxes

• Corrected some typing errors

2008-06-20 00:09 (#122) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVEvent.py

• Allowed for custom sorting, even on virtual lists

• Factored out test for binary search

• Added OLVColumn.useBinarySearch

• Added EVT_SORT and its friends

2008-06-20 00:05 (#121) - test/test_ObjectListView.py

• Added tests for virtual lists

2008-06-18 09:48 (#118) - setup.py

• Change download location

• Change feature list

2008-06-17 20:44 (#117) - ObjectListView/ObjectListView.py

• Made binary searching work when column is sorted descending

2008-06-17 00:53 (#116) - ObjectListView/ObjectListView.py

• use binary searches when searching on sorted columns

• use MAX_ROWS_FOR_UNSORTED_SEARCH to limit linear searches when typing

2008-06-17 00:47 (#115) - docs/.templates/layout.html, docs/faq.rst, docs/index.rst, docs/gettingStarted.rst, docs/recipes.rst

• Changed download location of source distribution

• Added recipe about referencing columnDefns inside a valueGetter

• Rearranged slightly the getting started section.

• Added FAQ about the indent of text when there is no icon

50 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

2008-06-16 22:43 (#114) - ObjectListView/ObjectListView.py

• Typing searches sort column complete

2008-06-15 21:15 (#113) - ObjectListView/ObjectListView.py

• Added ‘sortable’ parameter. VirtualObjectListView are now not sortable by default

• Improved management of image lists

2008-06-15 21:13 (#112) - setup.py, MANIFEST.in

• Include bmp files in MANIFEST.in

• Correct some details in setup.py

2008-06-14 22:31 (#111) - ObjectListView/CellEditor.py

• Changed use to utf-8 encoding

2008-06-14 22:29 (#110) - ObjectListView/ObjectListView.py

• Renamed sortColumn to be sortColumnIndex to make it clear

• Allow returns in multiline cell editors

• Only use alternate backcolors in report view, not in the other views

2008-06-08 21:30 (#109) - ObjectListView/ObjectListView.py

• Clear the DC before drawing a checkbox. Needed for Linux

2008-05-30 14:13 (#108) - ObjectListView/ObjectListView.py, test/test_ObjectListView.py

• Make ImageList.GetSize(0) work to empty image lists under Linux

• Added more tests, especially for FastObjectListView

2008-05-29 14:22 (#107) - CHANGELOG.txt, docs/changelog.rst

• v1.0 Release!

2008-05-29 14:17 (#106) - docs/features.rst, docs/whatsnew.rst, docs/cellEditing.rst, docs/.static/features-icon.png, docs/.templates/layout.html, docs/index.rst, docs/gettingStarted.rst, docs/recipes.rst

• Finally clean up of documentation before v1.0 release

2008-05-29 14:16 (#105) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/CellEditor.py

• Used named images internally

• Better handling of missing image lists

• Cleaned up some more documentation

2008-05-29 00:25 (#104) - ObjectListView/ObjectListView.py, ObjectListView/CellEditor.py

• Changed to use “isinstance(x, basestring)” rather than “isinstance(x, (str, unicode)”

2008-05-28 00:22 (#102) - docs/.static/changelog-icon.png, docs/whatsnew.rst, ObjectListView/ObjectListView.py, docs/.static/global.css, docs/.static/structure.css, docs/.templates/layout.html, CHANGELOG.txt, docs/faq.rst, docs/index.rst, docs/gettingStarted.rst, setup.py, Examples/Demo.py

• Better documentation in Demo.py

• Tidied up docs for v1.0 release

• Allow sorting by column created by CreateCheckStateColumn()

2008-05-27 13:38 (#101) - test/test_CellEditors.py, test/test_ObjectListView.py, test/test_OLVColumn.py

4.10. Change Log 51

ObjectListView Documentation, Release 1.2

• Added ”..” to python path so that ObjectListView will be found even if it hasn’t been installed

2008-05-27 13:37 (#100) - ObjectListView/ObjectListView.py, CHANGELOG.txt, FAQ.txt, COPYING.txt, ObjectListView/OLVEvent.py, THANKS.txt, setup.py, Examples/Demo.py, ObjectListView/CellEditor.py, ObjectListView.kpf

• Prepare for v1.0 release

2008-05-27 13:30 (#99) - docs/.static/faq-icon.png, docs/.static/index-icon.png, docs/.static/initial.css, docs/.static/gettingStarted-icon.png, docs/whatsnew.rst, docs/.static/recipes-icon.png, docs/cellEditing.rst, docs/.templates/layout.html, docs/conf.py, docs/.static/whatsnew-icon.png, docs/index.rst, docs/gettingStarted.rst, docs/.static/cellEditing-icon.png, docs/recipes.rst, docs/.static/search-icon.png

• Added images to generated html

• Prepare documentation for v1.0 release

2008-05-26 17:37 (#98) - Examples/Demo.wxg, Examples/Demo.py

• Remove “dummy” tab

2008-05-26 00:39 (#95) - setup.cfg, pylint.rc, AUTHORS.txt, TODO.txt, INSTALL.txt, CHANGELOG.txt, FAQ.txt, COPYING.txt, THANKS.txt, setup.py, COPYING, NEWS.txt, MANIFEST.in, ObjectListView.kpf

• Did all work to create proper package with distutils (setup.py)

2008-05-26 00:35 (#93) - Examples/example-images/convertImages.bat, Examples/Demo.py, Examples/example-images/convertImages.py, Examples/SimpleExample2.py, Examples/UsingDictionaryExample.py

• Corrected for new directory structure

2008-05-26 00:35 (#92) - ObjectListView/ObjectListView.py

• Fixed pyLint annoyances

2008-05-26 00:34 (#91) - ObjectListView/OLVEvent.py

• Fixed pyLint annoyances

2008-05-26 00:34 (#90) - ObjectListView/CellEditor.py

• Fixed pyLint annoyances

2008-05-26 00:33 (#89) - ObjectListView/__init__.py

• Cleaned up a litte

2008-05-24 01:57 (#67) - docs/source/.static/orange-800x1600.png, docs/source/images/coffee.jpg, docs/source/conf.py, docs/source/.static/reset.css, docs/source/faq.rst, docs/source/index.rst, docs/source/images/icecream3.jpg, docs/source/.static/initial.css, docs/source/.static/sphinx-default.css, docs/source/.static/master.css, docs/source/.static/light-blue-800x1600.png, docs/source/images/Thumbs.db, docs/source/.static/dialog.css, docs/source/.templates/layout.html, docs/source/.static/structure.css, docs/source/.static/global.css, docs/source/gettingStarted.rst, docs/source/recipes.rst, docs/source/.static/dialog2-blue-800x1600.png, docs/source/.static/dark-blue-800x1600.png, docs/source/images/cookbook-checkbox1.png, docs/source/images/cookbook-checkbox2.png

• Documentation near completion

2008-05-24 01:55 (#65) - ObjectListView/ObjectListView.py

• Added ability to name images

• Used _ to hide “private” methods

• Improved docs

• Correctly calculate subitem rect when in ICON view

• Implemented HitTestSubItem for all platforms

• Make sure empty list msg is shown on virtual lists

2008-05-24 01:51 (#64) - ObjectListView/CellEditor.py

• Change editor style when listctrl is in ICON view

2008-05-24 01:51 (#63) - ObjectListViewDemo/ObjectListViewDemo.py

• Made sure all buttons worked

52 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Uses named images

2008-05-24 01:49 (#62) - Tests/test_ObjectListView.py

• Added tests for checkboxes, SelectAll, DeselectAll, Refresh

2008-05-19 21:34 (#61) - ObjectListView/ObjectListView.py

• Added support for checkboxes

• Used “modelObject(s)” name instead of “object(s)”

• Made sure all public methods have docstrings

2008-05-19 21:32 (#60) - Tests/test_CellEditors.py, Tests/test_ObjectListView.py, Tests/test_OLVColumn.py, ObjectListView/CellEditor.py, ObjectListViewDemo/ObjectListViewDemo.py

• Added ”..” to sys.path to demo and tests

• Added demo for checkboxes

• Added tests for check boxes

2008-05-19 21:30 (#59) - docs/source/images, docs/source/.static, Examples/images/music16.png, Examples/images/convertImages.bat, docs/source/images/coffee.jpg, docs/source/conf.py, docs/source/.templates, docs/source/images/redbull.jpg, docs/source/index.rst, Examples/Images.py, ObjectListView.kpf, Examples/images/convertImages.py, docs/source/images/ModelToScreenProcess.png, Examples/images, docs/source/majorClasses.rst, docs/source/gettingStarted.rst, docs, docs/source, docs/source/recipes.rst, Examples/SimpleExample2.py, Examples/images/Group32.bmp, Examples/images/Group16.bmp, docs/source/faq.rst, docs/source/images/icecream3.jpg, Examples, docs/source/images/gettingstarted-example1.png, docs/source/images/gettingstarted-example2.png, docs/source/images/Thumbs.db, Examples/images/user32.png, Examples/SimpleExample1.py, Examples/images/music32.png, Examples/images/user16.png

• Added Sphinx based documentation (in progress)

2008-05-12 11:29 (#44) - OwnerDrawnEditor.py, ObjectListViewDemo.py

• Minor changes and add svn property

2008-05-12 11:28 (#43) - test_CellEditors.py, test_ObjectListView.py, test_OLVColumn.py

• Add some svn property

2008-05-12 11:26 (#41) - ObjectListView/ObjectListView.py

• Massively improved documentation. Generates reasonable docs using epydoc now.

2008-04-23 20:13 (#40) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVEvent.py, ObjectListView/CellEditor.py

• Added Id

2008-04-18 22:57 (#39) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListView/OLVEvent.py, ObjectListView/CellEditor.py

• Updated documentation

2008-04-18 00:00 (#38) - ObjectListView/ObjectListView.py

• Added List Empty msg

• Cleaned up code

2008-04-17 23:59 (#36) - ObjectListViewDemo.py

• Added “Clear List” buttons

• Set cell edit mode

• Made more columns non-auto sizing

2008-04-16 22:54 (#35) - ObjectListView/ObjectListView.py, ObjectListView/__init__.py, ObjectListViewDemo.py, ObjectListView/CellEditor.py

• Modularized ObjectListView

• Reorganised code within ObjectListView.py

4.10. Change Log 53

ObjectListView Documentation, Release 1.2

2008-04-14 16:29 (#29) - test_ObjectListView.py

• Added test for cell editing

2008-04-14 16:28 (#27) - ObjectListViewDemo.py

• Added Complex tab

• Made Simple tab to show what is possible with only ColumnDefns

• Give colour and font to model objects

2008-04-14 16:26 (#26) - ObjectListView.py

• Allow columns to have a cell editor creator function

• Handle horizontal scrolling when cell editing

• Added cell edit modes

• Handle edit during non-report views

• Correctly update slots with a previous value of None

• First cleanup of cell editing code

2008-04-08 00:24 (#25) - ObjectListView.py

• Cell editing finished, including model updating

• Changed manner of rebuilding list to use ListItems

• Unified rowFormatter to use ListItems. Now virtual lists use the same logic

• Improved documentation on ColumnDefn

• Lists can now be used a model objects.

• Removed sortable parameter to ObjectListView

2008-04-08 00:18 (#24) - test_OLVColumn.py

• Added tests for value setting

• Added tests of list accessing

• Reorganized tests

2008-04-08 00:17 (#23) - ObjectListViewDemo.py

• Changed to handle new unified rowFormatter

• Allow dateLastPlayed to be updated

2008-04-08 00:15 (#22) - OLVEvent.py

• Allow cell value to be changed in FinishingCellEdit event

2008-04-08 00:15 (#21) - CellEditor.py

• Validate keys in the numeric editors

2008-04-07 11:13 (#20) - ObjectListView.py, ObjectListViewDemo.py

• Made to work under Linux (still needs work)

2008-04-07 11:12 (#19) - OLVEvent.py

• Added the source listview as a parameter

2008-04-07 11:12 (#18) - CellEditor.py

54 Chapter 4. Site contents

ObjectListView Documentation, Release 1.2

• Make work under Linux

• Autocomplete no longer choke on large lists

2008-04-06 01:02 (#17) - ObjectListView.py, ObjectListViewDemo.py

• Cell editing in progress: F2 triggers, Tabbing works

• Improved docs in ObjectListView.py

• Added example of cell editing events to demo

2008-04-06 00:59 (#16) - OLVEvent.py

• Initial check in

2008-04-06 00:59 (#15) - test_CellEditors.py, test_ObjectListView.py, test_OLVColumn.py

• Separated column tests from list tests

• Added sorting tests and space filling tests

• Added basic tests for all editors

2008-04-06 00:57 (#14) - CellEditor.py

• Initial checkin.

• Editors for all basic types working

• Autocomplete textbox and combobox working

• Editor registry working

2008-04-02 00:42 (#13) - ObjectListView.py, ObjectListViewDemo.py

• Added free space filling columns

2008-03-29 22:44 (#12) - test_ObjectListView.py, ObjectListView.py, Demo.wxg, ObjectListViewDemo.py

• Added minimum, maximum and fixed widths for columns

• unified ‘stringFormat’ and ‘stringConverter’

• Added/update unit tests

2008-03-28 23:54 (#11) - ObjectListView.py, Demo.wxg, ObjectListViewDemo.py

• Added VirtualObjectListView and FastObjectListView

• Changed sort indicator icons

• Changed demo to use track information, and to show new classes

2008-03-06 12:20 (#10) - ObjectListViewDemo.py

• Call SetObjects() after assigning a rowFormatter

2008-03-06 12:19 (#9) - ObjectListView.py

• Improved docs

• Removed some duplicate code

2008-03-02 11:02 (#8) - ObjectListView.py, ObjectListViewDemo.py

• Added alternate row colors

• Added rowFormatter

2008-03-02 09:33 (#6) - ObjectListViewDemo.py

4.10. Change Log 55

ObjectListView Documentation, Release 1.2

• Added Update Selected

• Added examples of lowercase and Unicode

2008-03-02 09:31 (#5) - test_ObjectListView.py

• Test selections

• Use PySimpleApp

2008-03-02 09:30 (#4) - ObjectListView.py

• Added RefreshObject() and friends

• Do sorting within python when possible, rather than using SortItems(). 5-10x faster!

• Optimized RepopulateList()

2008-02-29 10:34 (#2) - images/BoxesThree32.bmp, images/BoxesThree16.bmp, images/Group32.bmp, test_ObjectListView.py, ObjectListView.py, images, images/DeliveryHand32.bmp, images/Group16.bmp, images/User32.bmp, images/DeliveryHand16.bmp, images/User16.bmp, Demo.wxg, ObjectListViewDemo.py

• Unit tests in progress

• Demo complete

56 Chapter 4. Site contents

	Without wasting my time, just tell me what it does!
	OK, I'm interested. What do I do next?
	Bleeding-edge source
	Site contents
	What's New?
	Features of an ObjectListView
	Getting Started
	Learning to cook
	Editing Cell Values
	Using a GroupListView
	Using a ListCtrlPrinter
	Frequently Asked Questions
	Major Classes Reference
	Change Log

